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Weather and climate extremes and water cycle
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Precipitation SPATIAL resolution/coverage need for hydrology

Number of rain gauges in a 0.5° x0.5° grid box (GPCC)

Ocean and polar regions virtually NOT sampled

Number of ground stations are decreasing
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Earth Science Missions
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Precipitation estimation from space
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April 1, 2017 — Radar on the Global precipitation measurement (GPM) mission
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Challenge !

Typical maps of multi-
sensor coverage of
precipitation every 30
minutes
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Rain started between 3-hr period
Missed the peak

Rain ended between 3-hr period

Short-life event
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Eaa% If?fll\nqa%on using Forward Adjusted Advection of Microwave Estimates
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Rainfall less frequent more intense in future
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Global sea level rise

Trend based on tide gauges

12

10
— Satellite measurements
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Data sources:
« CSIRO (Commonwealth Scientific and Industrial Research Organisation). 2015 update to data originally published in: Church,
JA., and N.J. White, 2011. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32:585-602.

b) Altimeter, ARGO and GRACE {cm)

— Global mean sea level (GMSL)
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See level change from 1992-2016 from satellites
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0 The Key factor in drying over land is that land surfaces
(and the air just above them) warm, on average, about
50% more than ocean surfaces (M. Joshi et al. 2008)

Warm climate

Sherwood and Fu (2014; Science),




Climate change alters the probability of
extreme events

(a new normal) 1951-1980 -
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standard deviation (X axis) obtained by counting gridboxes with
anomalies in each 0.05 interval. Area under each curve is unity
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HEAT

U.S. Deaths Attributed to Weather Conditions 2000-2009*

Cold 5%

Winter Storm 7%
Lightning 8%
Heat 24%
Wind 9%

Hurricanes
23%

Tornado 11%

Flood 13%

*NOAA 2010 in
http://www.cdc.gov/climateandhealth/pubs/ClimateChangeandExtremeHeatEvents.pdf




Drought, Biosphere-land—atmosphere feedbacks @

Environment:
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Vegetation:

Closed Stomata

Opened Stomata

Y solar-induced chlorophyll fluorescence
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Early detection of drought onset

Standardized index
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Behrangi et al. (2015, climate)

Drought formation

A. Behrangi
2017 Korean-American Symposium, U.S. National Academy of Sciences, CA, June 2017.



Remote sensing of drought

CALIPSO CloudSat

VI vegé on greenness)

nroroph‘y'n fluorescence (SIF)
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Global Monitoring Groundwater Depletion

NASA's Gravity Recovery
and Climate Experiment
(GRACE) satellite mission




FIRE

d Drought can cause and enhance fire

(] Extra precipitation before fire season can also
enhance flre occur ence and extent




Climate-induced variations in global wildfire danger from

1979 to 2013

Fire weather season length change (day/year)

P
weather season

72 18.7% increase in global
mean fire weather season
$ length.

length change (day per year)
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dThere is a doubling (108%
iIncrease) of global burnable
area affected by long fire
weather seasons.

Used NCEP and ECMWEF data to calculate

Long fire weather s

burning and fire danger indices

Jolly et al. 2015 (Nature communications)



Detecting FIRE from space:

NASA Moderate
Resolution Imaging
Spectroradiometer

(MODIS)



Annual mean number of fires from 2000-2009
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U The total number of fires that occur every year is between about 1.5-3.5
millions fires, according to satellite-based measurements from MODIS

0 Only about 4-5% of fires that occur on Earth every year occur in the USA.
Nearly 75% of all fires occur in the tropics, and about 50% occur on the
continent of Africa alone



Cascading and Interacting
Natural Hazards



Climate change & natural hazards: Interconnected processes

Temperature

Stream flow

So, it suggests that : Current climate
“stationary” assumptions in our
studies/designs need to be revised.




